Blogroll

Sunday, August 19, 2012

PENGOLAHAN DAN PEMANFAATAN LIMBAH PABRIK GULA


1
BAB I
PENDAHULUAN
1.1. Definisi Gula
Gula adalah suatu karbohidrat sederhana yang menjadi sumber energi dan komoditi perdagangan utama. Gula paling banyak diperdagangkan dalam bentuk kristal sukrosa padat. Gula digunakan untuk mengubah rasa menjadi manis dan keadaan makanan atau minuman. Gula sederhana, seperti glukosa (yang diproduksi dari sukrosa dengan enzim atau hidrolisis asam), menyimpan energi yang akan digunakan oleh sel. Gula sebagai sukrosa diperoleh dari nira tebu, bit gula, atau aren. Meskipun demikian, terdapat sumber-sumber gula minor lainnya, seperti kelapa. Sumber-sumber pemanis lain, seperti umbi dahlia, anggir, atau jagung, juga menghasilkan semacam gula/pemanis namun bukan tersusun dari sukrosa. Proses untuk menghasilkan gula mencakup tahap ekstrasi (pemerasan) diikuti dengan pemurnian melalui distilasi (penyulingan).
Negara-negara penghasil gula terbesar adalah negara-negara dengan iklim hangat seperti Australia, Brazil, dan Thailand. Hindia-Belanda (sekarang Indonesia) pernah menjadi produsen gula utama dunia pada tahun 1930-an, namun kemudian tersaingi oleh industri gula baru yang lebih efisien. Pada tahun 2001/2002 gula yang diproduksi di negara berkembang dua kali lipat lebih banyak dibandingkan gula yang diproduksi negara maju. Penghasil gula terbesar adalah Amerika Latin, negara-negara Karibia, dan negara-negara Asia Timur. Sumber gula di Indonesia sejak masa lampau adalah cairan bunga (nira) kelapa atau enau, serta cairan batang tebu. Tebu adalah tumbuhan asli dari Nusantara, terutama di bagian timur. Ketika orang-orang Belanda mulai membuka koloni di Pulau Jawa kebun-kebun tebu monokultur mulai dibuka oleh tuan-tuan tanah pada abad ke-17, pertama di sekitar Batavia, lalu berkembang ke arah timur.
Puncak kegemilangan perkebunan tebu dicapai pada tahun-tahun awal 1930-an, dengan 179 pabrik pengolahan dan produksi tiga juta ton gula per tahun. Penurunan harga gula akibat krisis ekonomi merontokkan industri ini dan pada
2
akhir dekade hanya tersisa 35 pabrik dengan produksi 500 ribu ton gula per tahun. Situasi agak pulih menjelang Perang Pasifik, dengan 93 pabrik dan prduksi 1,5 juta ton. Seusai Perang Dunia II, tersisa 30 pabrik aktif. Tahun 1950-an menyaksikan aktivitas baru sehingga Indonesia menjadi eksportir netto. Pada tahun 1957 semua pabrik gula dinasionalisasi dan pemerintah sangat meregulasi industri ini. Sejak 1967 hingga sekarang Indonesia kembali menjadi importir gula.
1.2. Definisi Limbah
Limbah adalah buangan yang dihasilkan dari suatu proses produksi baik industri maupun domestik (rumah tangga). Dimana masyarakat bermukim, disanalah berbagai jenis limbah akan dihasilkan. Ada sampah, ada air kakus (black water), dan ada air buangan dari berbagai aktivitas domestik lainnya (grey water).
Limbah padat lebih dikenal sebagai sampah, yang seringkali tidak dikehendaki kehadirannya karena tidak memiliki nilai ekonomis. Bila ditinjau secara kimiawi, limbah ini terdiri dari bahan kimia Senyawa organik dan Senyawa anorganik. Dengan konsentrasi dan kuantitas tertentu, kehadiran limbah dapat berdampak negatif terhadap lingkungan terutama bagi kesehatan manusia, sehingga perlu dilakukan penanganan terhadap limbah. Tingkat bahaya keracunan yang ditimbulkan oleh limbah tergantung pada jenis dan karakteristik limbah.
1.2.1. Karakteristik limbah
1. Berukuran mikro
2. Dinamis
3. Berdampak luas (penyebarannya)
4. Berdampak jangka panjang (antar generasi)
1.2.2. Limbah industri
3
Berdasarkan karakteristiknya limbah industri dapat dibagi menjadi empat bagian, yaitu:
1. Limbah cair biasanya dikenal sebagai entitas pencemar air. Komponen pencemaran air pada umumnya terdiri dari bahan buangan padat, bahan buangan organik dan bahan buangan anorganik
2. Limbah padat
3. Limbah gas dan partikel
Proses Pencemaran Udara Semua spesies kimia yang dimasukkan atau masuk ke atmosfer yang “bersih” disebut kontaminan. Kontaminan pada konsentrasi yang cukup tinggi dapat mengakibatkan efek negatif terhadap penerima (receptor), bila ini terjadi, kontaminan disebut cemaran (pollutant).Cemaran udara diklasifihasikan menjadi 2 kategori menurut cara cemaran masuk atau dimasukkan ke atmosfer yaitu: cemaran primer dan cemaran sekunder. Cemaran primer adalah cemaran yang diemisikan secara langsung dari sumber cemaran. Cemaran sekunder adalah cemaran yang terbentuk oleh proses kimia di atmosfer. Sumber cemaran dari aktivitas manusia (antropogenik) adalah setiap kendaraan bermotor, fasilitas, pabrik, instalasi atau aktivitas yang mengemisikan cemaran udara primer ke atmosfer. Ada 2 kategori sumber antropogenik yaitu: sumber tetap (stationery source) seperti: pembangkit energi listrik dengan bakar fosil, pabrik, rumah tangga,jasa, dan lain-lain dan sumber bergerak (mobile source) seperti: truk,bus, pesawat terbang, dan kereta api.
Lima cemaran primer yang secara total memberikan sumbangan lebih dari 90% pencemaran udara global adalah:
a. Karbon monoksida (CO),
b. Nitrogen oksida (Nox),
c. Hidrokarbon (HC),
d. Sulfur oksida (SOx)
e. Partikulat.
4
Selain cemaran primer terdapat cemaran sekunder yaitu cemaran yang memberikan dampak sekunder terhadap komponen lingkungan ataupun cemaran yang dihasilkan akibat transformasi cemaran primer menjadi bentuk cemaran yang berbeda. Ada beberapa cemaran sekunder yang dapat mengakibatkan dampak penting baik lokal,regional maupun global yaitu:
a. CO2 (karbon monoksida),
b. Cemaran asbut (asap kabut) atau smog (smoke fog),
c. Hujan asam,
d. CFC (Chloro-Fluoro-Carbon/Freon),
e. CH4 (metana).
1.2.3. Limbah B3 (Bahan Berbahaya dan Beracun)
Secara umum yang disebut limbah adalah bahan sisa yang dihasilkan dari suatu kegiatan dan proses produksi, baik pada skala rumah tangga, industri, pertambangan, dan sebagainya. Bentuk limbah tersebut dapat berupa gas dan debu, cair atau padat. Di antara berbagai jenis limbah ini ada yang bersifat beracun atau berbahaya dan dikenal sebagai limbah Bahan Berbahaya dan Beracun (Limbah B3).
Suatu limbah digolongkan sebagai limbah B3 bila mengandung bahan berbahaya atau beracun yang sifat dan konsentrasinya, baik langsung maupun tidak langsung, dapat merusak atau mencemarkan lingkungan hidup atau membahayakan kesehatan manusia.Yang termasuk limbah B3 antara lain adalah bahan baku yang berbahaya dan beracun yang tidak digunakan lagi karena rusak, sisa kemasan, tumpahan, sisa proses, dan oli bekas kapal yang memerlukan penanganan dan pengolahan khusus. Bahan-bahan ini termasuk limbah B3 bila memiliki salah satu atau lebih karakteristik berikut: mudah meledak, mudah terbakar, bersifat reaktif, beracun, menyebabkan infeksi, bersifat korosif, dan lain-lain, yang bila diuji dengan toksikologi dapat diketahui termasuk limbah B3.
5
1.2.4. Macam Limbah Beracun
 Limbah mudah meledak adalah limbah yang melalui reaksi kimia dapat menghasilkan gas dengan suhu dan tekanan tinggi yang dengan cepat dapat merusak lingkungan.
 Limbah mudah terbakar adalah limbah yang bila berdekatan dengan api, percikan api, gesekan atau sumber nyala lain akan mudah menyala atau terbakar dan bila telah menyala akan terus terbakar hebat dalam waktu lama.
 Limbah reaktif adalah limbah yang menyebabkan kebakaran karena melepaskan atau menerima oksigen atau limbah organik peroksida yang tidak stabil dalam suhu tinggi.
 Limbah beracun adalah limbah yang mengandung racun yang berbahaya bagi manusia dan lingkungan. Limbah B3 dapat menimbulkan kematian atau sakit bila masuk ke dalam tubuh melalui pernapasan, kulit atau mulut.
 Limbah penyebab infeksi adalah limbah laboratorium yang terinfeksi penyakit atau limbah yang mengandung kuman penyakit, seperti bagian tubuh manusia yang diamputasi dan cairan tubuh manusia yang terkena infeksi.
 Limbah yang bersifat korosif adalah limbah yang menyebabkan iritasi pada kulit atau mengkorosikan baja, yaitu memiliki pH sama atau kurang dari 2,0 untuk limbah yang bersifat asam dan lebih besar dari 12,5 untuk yang bersifat basa.
Pengelolaan Limbah B3 adalah rangkaian kegiatan yang mencakup reduksi, penyimpanan, pengumpulan, pengangkutan, pemanfaatan, pengolahan, dan penimbunan limbah B3. Pengelolaan Limbah B3 ini bertujuan untuk mencegah, menanggulangi pencemaran dan kerusakan lingkungan, memulihkan kualitas lingkungan tercemar, dan meningkatan kemampuan dan fungsi kualitas lingkungan.
6
BAB II
PROSES PEMBUATAN GULA
2.1. Persiapan Pembuatan Gula Tebu
Tebu adalah tanaman yang ditanam untuk bahan baku gula. Tebu ini termasuk jenis rumput-rumputan. Tanaman tebu dapat tumbuh hingga 3 meter di kawasan yang mendukung. Umur tanaman sejak ditanam sampai bisa dipanen mencapai kurang lebih 1 tahun. Tahapan-tahapan dalam proses pembuatan gula dimulai dari penanaman tebu, proses ektrasi, pembersihan kotoran, penguapan, kritalisasi, afinasi, karbonasi, penghilangan warna, dan sampai proses pengepakan sehingga sampai ketangan konsumen.
2.2. Ekstraksi
7
Tahap pertama pembuatan gula tebu adalah ekstraksi jus atau sari tebu. Caranya dengan menghancurkan tebu dengan mesin penggiling untuk memisahkan ampas tebu dengan cairannya. Cairan tebu kemudian dipanaskan dengan boiler. Jus yang dihasilkan masih berupa cairan yang kotor: sisa-sisa tanah dari lahan, serat-serat berukuran kecil dan ekstrak dari daun dan kulit tanaman, semuanya bercampur di dalam gula. Jus dari hasil ekstraksi mengandung sekitar 50 % air, 15% gula dan serat residu, dinamakan bagasse, yang mengandung 1 hingga 2% gula. Dan juga kotoran seperti pasir dan batu-batu kecil dari lahan yang disebut sebagai “abu”.
2.3. Pengendapan Kotoran Dengan Kapur (Liming)
Jus tebu dibersihkan dengan menggunakan semacam kapur (slaked lime) yang akan mengendapkan sebanyak mungkin kotoran , kemudian kotoran ini dapat dikirim kembali ke lahan. Proses ini dinamakan liming. Jus hasil ekstraksi dipanaskan sebelum dilakukan liming untuk mengoptimalkan proses penjernihan. Kapur berupa kalsium hidroksida atau Ca(OH)2 dicampurkan ke dalam jus dengan perbandingan yang diinginkan dan jus yang sudah diberi kapur ini kemudian dimasukkan ke dalam tangki pengendap gravitasi: sebuah tangki penjernih (clarifier). Jus mengalir melalui clarifier dengan kelajuan yang rendah
8
sehingga padatan dapat mengendap dan jus yang keluar merupakan jus yang jernih. Kotoran berupa lumpur dari clarifier masih mengandung sejumlah gula sehingga biasanya dilakukan penyaringan dalam penyaring vakum putar (rotasi) dimana jus residu diekstraksi dan lumpur tersebut dapat dibersihkan sebelum dikeluarkan, dan hasilnya berupa cairan yang manis. Jus dan cairan manis ini kemudian dikembalikan ke proses.
2.4. Penguapan (Evaporasi)
Setelah mengalami proses liming, proses evaporasi dilakukan untuk mengentalkan jus menjadi sirup dengan cara menguapkan air menggunakan uap panas (steam). Terkadang sirup dibersihkan lagi tetapi lebih sering langsung menuju ke tahap pembuatan kristal tanpa adanya pembersihan lagi. Jus yang sudah jernih mungkin hanya mengandung 15% gula tetapi cairan (liquor) gula jenuh (yaitu cairan yang diperlukan dalam proses kristalisasi) memiliki kandungan gula hingga 80%. Evaporasi dalam ‘evaporator majemuk’ (multiple effect evaporator) yang dipanaskan dengan steam merupakan cara yang terbaik untuk bisa mendapatkan kondisi mendekati kejenuhan (saturasi).
2.5. Pendidihan/ Kristalisasi
9
Pada tahap akhir pengolahan, sirup ditempatkan ke dalam wadah yang sangat besar untuk dididihkan. Di dalam wadah ini air diuapkan sehingga kondisi untuk pertumbuhan kristal gula tercapai. Pembentukan kristal diawali dengan mencampurkan sejumlah kristal ke dalam sirup. Sekali kristal terbentuk, kristal campur yang dihasilkan dan larutan induk (mother liquor) diputar di dalam alat sentrifugasi untuk memisahkan keduanya, bisa diumpamakan seperti pada proses mencuci dengan menggunakan pengering berputar. Kristal-kristal tersebut kemudian dikeringkan dengan udara panas sebelum disimpan.
Larutan induk hasil pemisahan dengan sentrifugasi masih mengandung sejumlah gula sehingga biasanya kristalisasi diulang beberapa kali. Sayangnya, materi-materi non gula yang ada di dalamnya dapat menghambat kristalisasi. Hal ini terutama terjadi karena keberadaan gula-gula lain seperti glukosa dan fruktosa yang merupakan hasil pecahan sukrosa. Olah karena itu, tahapan-tahapan berikutnya menjadi semakin sulit, sampai kemudian sampai pada suatu tahap di mana kristalisasi tidak mungkin lagi dilanjutkan.
Sebagai tambahan, karena gula dalam jus tidak dapat diekstrak semuanya, maka terbuatlah produk samping (byproduct) yang manis: molasses. Produk ini biasanya diolah lebih lanjut menjadi pakan ternak atau ke industri penyulingan untuk dibuat alkohol (etanol) . Belakangan ini molases dari tebu di olah menjadi bahan energi alternatif dengan meningkatkan kandungan etanol sampai 99,5%.
10
2.6. Penyimpanan
Gula kasar yang dihasilkan akan membentuk gunungan coklat lengket selama penyimpanan dan terlihat lebih menyerupai gula coklat lunak yang sering dijumpai di dapur-dapur rumah tangga. Gula ini sebenarnya sudah dapat digunakan, tetapi karena kotor dalam penyimpanan dan memiliki rasa yang berbeda maka gula ini biasanya tidak diinginkan orang. Oleh karena itu gula kasar biasanya dimurnikan lebih lanjut ketika sampai di negara pengguna.
2.7. Afinasi (Affination)
Tahap pertama pemurnian gula yang masih kasar adalah pelunakan dan pembersihan lapisan cairan induk yang melapisi permukaan kristal dengan proses yang dinamakan dengan “afinasi”. Gula kasar dicampur dengan sirup kental (konsentrat) hangat dengan kemurnian sedikit lebih tinggi dibandingkan lapisan sirup sehingga tidak akan melarutkan kristal, tetapi hanya sekeliling cairan (coklat). Campuran hasil (‘magma’) di-sentrifugasi untuk memisahkan kristal dari sirup sehingga kotoran dapat dipisahkan dari gula dan dihasilkan kristal yang siap untuk dilarutkan sebelum proses karbonatasi.
Cairan yang dihasilkan dari pelarutan kristal yang telah dicuci mengandung berbagai zat warna, partikel-partikel halus, gum dan resin dan substansi bukan gula lainnya. Bahan-bahan ini semua dikeluarkan dari proses.
2.8. Karbonatasi
Tahap pertama pengolahan cairan (liquor) gula berikutnya bertujuan untuk membersihkan cairan dari berbagai padatan yang menyebabkan cairan gula keruh. Pada tahap ini beberapa komponen warna juga akan ikut hilang. Salah satu dari dua teknik pengolahan umum dinamakan dengan karbonatasi. Karbonatasi dapat diperoleh dengan menambahkan kapur/ lime [kalsium hidroksida, Ca(OH)2] ke dalam cairan dan mengalirkan gelembung gas karbondioksida ke dalam campuran tersebut. Gas karbondioksida ini akan bereaksi dengan lime membentuk partikel-
11
partikel kristal halus berupa kalsium karbonat yang menggabungkan berbagai padatan supaya mudah untuk dipisahkan. Supaya gabungan-gabungan padatan tersebut stabil, perlu dilakukan pengawasan yang ketat terhadap kondisi-kondisi reaksi.
Gumpalan-gumpalan yang terbentuk tersebut akan mengumpulkan sebanyak mungkin materi-materi non gula, sehingga dengan menyaring kapur keluar maka substansi-substansi non gula ini dapat juga ikut dikeluarkan. Setelah proses ini dilakukan, cairan gula siap untuk proses selanjutnya berupa penghilangan warna.
2.9. Penghilangan warna
Ada dua metoda umum untuk menghilangkan warna dari sirup gula. Salah satunya dengan menggunakan karbon teraktivasi granular [granular activated carbon, GAC] yang mampu menghilangkan hampir seluruh zat warna. GAC merupakan cara modern setingkat “bone char”, sebuah granula karbon yang terbuat dari tulang-tulang hewan. Karbon pada saat ini terbuat dari pengolahan karbon mineral yang diolah secara khusus untuk menghasilkan granula yang tidak hanya sangat aktif tetapi juga sangat kuat. Karbon dibuat dalam sebuah oven panas dimana warna akan terbakar keluar dari karbon. Cara yang lain adalah dengan menggunakan resin penukar ion yang menghilangkan lebih sedikit warna
12
daripada GAC tetapi juga menghilangkan beberapa garam yang ada. Resin dibuat secara kimiawi yang meningkatkan jumlah cairan yang tidak diharapkan.
Cairan jernih dan hampir tak berwarna ini selanjutnya siap untuk dikristalisasi kecuali jika jumlahnya sangat sedikit dibandingkan dengan konsumsi energi optimum di dalam pemurnian. Oleh karenanya cairan tersebut diuapkan sebelum diolah di panci kristalisasi.
2.10. Pendidihan
Sejumlah air diuapkan di dalam panci sampai pada keadaan yang tepat untuk tumbuhnya kristal gula. Sejumlah bubuk gula ditambahkan ke dalam cairan untuk mengawali/memicu pembentukan kristal. Ketika kristal sudah tumbuh campuran dari kristal-kristal dan cairan induk yang dihasilkan diputar dalam sentrifugasi untuk memisahkan keduanya. Proses ini dapat diumpamakan dengan tahap pengeringan pakaian dalam mesin cuci yang berputar. Kristal-kristal tersebut kemudian dikeringkan dengan udara panas sebelum dikemas dan/ atau disimpan siap untuk didistribusikan.
2.11. Blok Diagram Proses Persiapan Pembuatan Gula Tebu
Persiapan Pembuatan Gula Tebu
Ekstraksi Cairan Kental (jus), air 50 %,
Gula 15 %
Pengendapan Kotoran Dengan Kapur (Liming) di campurkan
Ca(OH)2 menjadi cairan manis.
Penguapan (Evaporasi) terdapat gula 80 %
13
Pendidihan/ Kristalisasi pertumbuhan kristal
Penyimpanan coklat lengket (gula kasar)
Afinasi (Affination) kristal yang siap dilarutkan
Karbonatasi kristal halus
Penghilangan warna
Pendidihan
Pengeringan
Produk
14
BAB III
PENGOLAHAN DAN PEMANFAATAN
LIMBAH PABRIK GULA
Pada pemrosesan gula dari tebu menghasilkan limbah atau hasil samping, antara lain ampas, blotong dan tetes. Ampas berasal dari tebu yang digiling dan digunakan sebagai bahan bakar ketel uap. Blotong atau filter cake adalah endapan dari nira kotor yang di tapis di rotary vacuum filter, sedangkan tetes merupakan sisa sirup terakhir dari masakan yang telah dipisahkan gulanya melalui kristalisasi berulangkali sehingga tak mungkin lagi menghasilkan kristal.
3.1. Limbah Bagasse (Ampas)
Satu diantara energi alternatif yang relatif murah ditinjau aspek produksinya dan relatif ramah lingkungan adalah pengembangan bioetanol dari limbah-limbah pertanian (biomassa) yang mengandung banyak lignocellulose seperti bagas (limbah padat industri gula). Indonesia memiliki potensi limbah biomassa yang sangat melimpah seperti bagas. Industri gula khususnya di luar jawa menghasilkan bagas yang cukup melimpah. Potensi bagasse di Indonesia menurut Pusat Penelitian Perkebunan Gula Indonesia (P3GI) tahun 2008, cukup besar dengan komposisi rata-rata hasil samping industri gula di Indonesia terdiri dari limbah cair 52,9 persen, blotong 3,5 persen, ampas (bagasse) 32,0 persen, tetes 4,5 persen dan gula 7,05 persen serta abu 0,1 persen.
Bagasse tebu (Saccharum officinarum L.) semula banyak dimanfaatkan oleh pabrik kertas, namun karena tuntutan dari kualitas kertas dan sudah banyak tersedia bahan baku kertas lain yang lebih berkualitas, sehingga pabrik kertas mulai jarang menggunakannya. Material bahan organik yang dimiliki pabrik gula cukup banyak, sebagai contoh adalah limbah hasil proses pasca panen di lapangan, yaitu klaras dan daun tebu, serta limbah proses pabrik gula, antara lain blotong dan ampas tebu yang kadar bahan organiknya dapat mencapai di atas 50%
15
(Unus, 2002). Limbah padat pabrik gula (PG) berpotensi besar sebagai sumber bahan organik yang berguna untuk kesuburan tanah. Menurut Budiono (2008), ampas (bagasse) tebu mengandung 52,67% kadar air; 55,89% C-organik; N-total 0,25%; 0,16% P2O5; dan 0,38% K2O.
Kompos adalah hasil dekomposisi biologi dari bahan organik yang dapat dipercepat secara artifisial oleh populasi berbagai macam mikroba (bakteria, actinomycetes dan fungi) dalam kondisi lingkungan aerobik atau anaerobic. Hasil pengomposan campuran blotong, ampas (bagasse) dan abu ketel diinkubasi dengan bioaktivator mikroba selulolitik selama 1 dan 2 minggu, kemudian diaplikasikan ke lahan tebu. Pemberian kompos 10 ton/ha mampu meningkatkan bobot tebu sebanyak 16,8 ton/ha. Bioaktivator adalah inokulum campuran berbagai jenis mikroorganisme (mikroba lignolitik, selulolitik, proteolitik, lipolitik, amilolitik, dan mikroba fiksasi nitrogen non simbiotik) untuk mempercepat laju pengomposan bahan organik . Bibit perombak Katalek® merupakan bioaktivator pembuatan kompos yang diteliti selama beberapa tahun akan keefektifan mikrobanya dalam mempercepat perombakan bahan-bahan organik menjadi unsur hara yang berguna bagi tanah. Bibit perombak Katalek® mengandung 13 macam mikroba (diantaranya Bacillus, Lactobacillus, Pseudomonas, Streptomyces, Clostridium, Aspergillus) yang berperan dalam penguraian atau dekomposisi limbah oirganik sampai berubah menjadi kompos. Sedangkan penggunaan bibit pengaya Katalek® yang terdiri dari beberapa mikroba diantaranya Azotobacter, Trichoderma, Aspergillus, Pseudomonas) akan menghasilkan kompos yang lebih kaya akan unsur hara (N, P dan K) sehingga dapat mempengaruhi produktivitas tanaman.
Pengembangan teknologi bioproses etanol dengan menggunakan enzim pada proses hidrolisisnya diyakini sebagai suatu proses yang lebih ramah lingkungan. Pemanfaatan enzim sebagai zat penghidrolisis tergantung pada substrat yang menjadi prioritas, penelitian telah dilakukan untuk mengantikan asam yaitu menggunakan jamur pelapuk putih untuk perlakuan awal kemudian dengan menggunakan enzim selulase untuk menghidrolisis selulosa menjadi
16
glukosa, kemudian melakukan fermentasi dengan menggunakan S. cerivisiae untuk mengkonversi menjadi etanol. Namun, pemanfaatan enzim selulase dan yeast S. cerivisiae tidak mampu mengkonversi kandungan hemiselulosa pada bagas. Padahal sekitar 20-25% komposisi karbohidrat bagas adalah hemiselulosa. Jika kita mampu mengkonversi hemiselulosa berarti akan meningkatkan konversi bagas menjadi etanol. Material berbasis lignoselulosa (lignocellulosic material) memiliki substrat yang cukup kompleks karena didalamnya terkadung lignin, polisakarida, zat ekstraktif, dan senyawa organik lainnya. Bagian terpenting dan yang terbanyak dalam lignocellulosic material adalah polisakarida khususnya selulosa yang terbungkus oleh lignin dengan ikatan yang cukup kuat. Dalam kaitan konversi biomassa seperti bagas menjadi etanol, bagian yang terpenting adalah polisakarida. Karena polisakarida tersebut yang akan dihidrolisis menjadi monosakarida seperti glukosa, sukrosa, xilosa, arabinosa dan lain-lain sebelum dikonversi menjadi etanol. Proses hidrolisis umumnya digunakan pada industry etanol adalah menggunakan hidrolisis dengan asam (acid hydrolysis) dengan menggunakan asam sulfat (H2SO4) atau dengan menggunakan asam klorida (HCl). Proses hidrolisis dapat dilakukan dengan menggunakan enzim yang sering disebut dengan enzymatic hydrolysis yaitu hidrolisis dengan menggunakan enzim jenis selulase atau jenis yang lain. Keuntungan dari hidrolisis dengan enzim dapat mengurangi penggunaan asam sehingga dapat mengurangi efek negatif terhadap lingkungan. Kemudian setelah proses hidrolisis dilakukan fermentasi menggunakan yeast seperti S. cerevisiae untuk mengkonversi menjadi etanol. Proses hidrolisis dan fermentasi ini akan sangat efisien dan efektif jika dilaksanakan secara berkelanjutan tanpa melalui tenggang waktu yang lama, hal ini yang sering dikenal dengan istilah Simultaneous Sacharificatian dan Fermentation (SSF). Keuntungan dari proses ini adalah polisakarida yang terkonversi menjadi monosakarida tidak kembali menjadi poliskarida karena monosakarida langsung difermentasi menjadi etanol. Selain itu dengan menggunakan satu reaktor dalam prosesnya akan mengurangi biaya peralatan yang digunakan.
17
Seperti halnya pakan ternak dari limbah yang mengandung serat pada umumnya, bagas tebu mempunyai faktor pembatas, yaitu kandungan nutrisi dan kecernaannya yang sangat rendah. Bagas tebu mempunyai kadar serat kasar dan kadar lignin sangat tinggi, yaitu masing-masing sebesar 46,5% dan 14%. Pendekatan bioproses dalam rumen melalui suplementasi amonium sulfat dan defaunasi yang dilakukan pada kambing yang mendapat ransum berbahan dasar limbah tebu belum berhasil meningkatkan produktivitas kambing. Pendekatan melalui teknik pengolahan pakan sebelum pakan dikonsumsi akan dapat meningkatkan daya guna bagas tebu. Rekayasa teknologi pengolahan pakan yang dapat dilakukan untuk meningkatkan kualitas nutrisi bagas tebu adalah teknik amoniasi dan fermentasi. Proses amoniasi akan melemahkan ikatan lignoselulosa bagas tebu serta fermentasi telah terbukti dapat menurunkan kadar serat kasar dan meningkatkan kadar protein kasar. Mikroba yang sering digunakan sebagai agen fermentasi limbah yang mengandung serat kasar tinggi adalah kapang Trichoderma viride. Kapang tersebut akan menghasilkan enzim untuk mencerna serat kasar sehingga dapat dimanfaatkan sebagai pakan.
Teknologi pembuatan papan partikel dari ampas tebu PSUH 94-3 merupakan komponen teknologi pemanfaatan hasil samping tebu. Kompo-sisi bahan dan teknologi pembuatan papan partikel telah memenuhi Standar Industri Indonesia (SII) seperti terlihat pada tabel hasil uji coba. Papan partikel dari ampas tebu dibuat dengan cara pengeringan, penggilingan, dan pe-nyaringan ampas, pencampuran ampas dengan perekat, resin dan parafin wax serta pencetakan dengan tekanan hidrolik pada kondisi tekanan 10 kg per cm2, suhu 150?C selama 15 menit. Perekat terdiri dari urea formaldehide, hardener, ammonia, dan air.
3.2. Limbah Blotong (Padat)
Salah satu limbah yang dihasilkan PG dalam proses pembuatan gula adalah blotong, limbah ini keluar dari proses dalam bentuk padat mengandung air dan masih ber temperatur cukup tinggi < panas >, berbentuk seperti tanah, sebenarnya adalah serat tebu yang bercampur kotoran yang dipisahkan dari nira.
18
Komposisi blotong terdiri dari sabut, wax dan fat kasar, protein kasar,gula, total abu,SiO2, CaO, P2O5 dan MgO. Komposisi ini berbeda prosentasenya dari satu PG dengan PG lainnya, bergantung pada pola prodkasi dan asal tebu.
Selama ini pemanfaatan blotong umumnya adalah sebagai pupuk organik, dibeberapa PG daur ulang blotong menjadi pupuk yang kemudian digunakan untuk produksi tebu di wilayah-wilayah tanam para petani tebu. Proses penggunaan pupuk organik ini tidak rumit, setelah dijemur selama beberapa minggu / bulan untuk diaerasi di tempat terbuka, dimaksudkan untuk mengurangi temperatur dan kandungan Nitrogen yang berlebihan. Dengan tetap menggunakan pupuk anorganik sebagai starter, maka penggunaan pupuk organik blotong ini masih bisa diterima oleh masyarakat. Pada perkembangan selanjutnya, upaya pemanfaatan blotong sebagai pengganti kayu bakar mulai dilirik setelah kampanye penggunaan energi alternaif didengungkan. Pemanfaatan blotong sebagai kayu bakar, sebenarnya sudah lama dijalankan oleh masyarakat di sekitar PG, hal ini diawali dari pengalaman mereka setelah melihat bahwa blotong bisa terbakar, dan timbulah pemikiran untuk memanfaatkan blotong sebagai pengganti kayu bakar dengan cara menghilangkan kadar air yang terkandung didalamnya.\ untuk memudahkan dalam penggunaanya sebagai kayu bakar, mereka mencetak dalam ukuran yang mudah diangkut dan sesuai dengan ukuran mulut kompor didapur mereka.
Proses pembuatan blotong pengganti kayu bakar sangat sederhana, limbah blotong dari pabrik yang masih panas, diangkut dengan dump truk menuju lokasi pengrajin/pembuat blotong kayu bakar, blotong ini kemudian dijemur di terik matahari selama 2 – 3 minggu dengan intensitas matahari penuh. Sebelum total kering, lapisan blotong ini dipadatkan dengan tujuan untuk mempersempit pori dan membuang sisa kandungan air, kemudian dipotong seukuran batu bata untuk memudahkan pengangkutan. Setelah dirasa cukup kering pada satu permukaan, bata blothong ini dibalik, supaya sisi lainnya juga kering. Hasil yang diperoleh dari proses ini adalah blothong seukuran batu bata yang bobotnya ringan karena kandungan airnya sudah hilang. Penggunaan, untuk keperluan memasak di
19
kompor tanah mereka, blothong kering tersebut masih harus dipotong menjadi ukuran yang lebih kecil menyesuaikan lubang pemasukan kompor. Dari satu rit blothong tersebut, setelah diolah dan kering, kemudian dipindahkan ke dapur sebagai cadangan kayu bakar. Cadangan blothong / kayu bakar ini cukup untuk memenuhi kebutuhan memasak sampai dengan musim giling tahun depan.
Blotong dapat dimanfaatkan sebagai sumber protein. Kandungan protein dari nira sekitar 0.5 % berat zat padat terlarut. Dari kandungan tersebut telah dicoba untuk melakukan ekstraksi protein dari blotong dan ditemukan bahwa kandungan protein dari blotong yang dipress sebesar 7.4 %. Protein hanya dapat diekstrak menggunakan zat alkali yang kuat seperti sodium dodecyl sulfate. Kandungan dari protein yang dapat diekstrak antara lain albumin 91.5 %; globulin 1 %; etanol terlarut 3 % dan protein terlarut 4 %. Dengan demikian blotong dapat juga digunakan sebagai pakan ternak dengan cara dikeringkan dan dipisahkan partikel tanah yang terdapat didalamnya. Untuk menghindari kerusakan oleh jamur dan bakteri blotong yang dikeringkan harus langsung digunakan dalam bentuk pellet
Pada saat ini pemanfaatan blotong antara lain sebagai bahan bakar alternative dalam bentuk briket. Untuk pembuatan briket blotong dipadatkan lalu dikeringkan. Keuntungan menggunakan briket blotong adalah harganya yang lebih murah daripada kayu bakar dan bahan bakar lain. Akan tetapi untuk membuat briket ini diperlukan waktu cukup lama antara 4 sampai 7 hari pengeringan, selain itu juga tergantung dari kondisi cuaca. Pada saat ini semakin banyak masyarakat yang memanfaatkan blotong sebagai bahan bakar rumah tangga pengganti MITAN dan kayu bakar. Kedepannya perlu ada kajian apakah briket blotong ini juga bisa digunakan sebagai bahan bakar ketel sehingga dapat mengurangi konsumsi bahan bakar minyak PG.
Blotong dapat digunakan langsung sebagai pupuk, karena mengandung unsur hara yang dibutuhkan tanah. Untuk memperkaya unsur N blotong dikompos dengan ampas tebu dan abu ketel (kabak). Pemberian ke tanaman tebu sebanyak
20
100 ton blotong atau komposnya per hektar dapat meningkatkan bobot dan rendemen tebu secara signifikan. Kandungan hara kompos ampas tebu (KAT), blotong dan komposdari ampas tebu, blotong dan abu ketel (KABAK) disajikan pada Tabel
 Tabel Hasil Analisis Kimia KAT, Blotong dan KABAK
3.3 Limbah Tetes (Cair)
Tetes atau molasses merupakan produk sisa (by product) pada proses pembuatan gula. Tetes diperoleh dari hasil pemisahan sirop low grade dimana gula dalam sirop tersebut tidak dapat dikristalkan lagi. Pada pemrosesan gula tetes yang dihasilkan sekitar 5 – 6 % tebu, sehingga untuk pabrik dengan kapasitas 6000 ton tebu per hari menghasilkan tetes sekitar 300 ton sampai 360 ton tetes per hari. Walaupun masih mengandung gula, tetes sangat tidak layak untuk dikonsumsi karena mengandung kotoran-kotoran bukan gula yang membahayakan kesehatan. Penggunaan tetes sebagian besar untuk industri fermentasi seperti alcohol, pabrik MSG, pabrik pakan ternak dll.
Secara umum tetes yang keluar dari sentrifugal mempunyai brix 85 – 92 dengan zat kering 77 – 84 %. Sukrosa yang terdapat dalam tetes bervariasi antara 25 – 40 %, dan kadar gula reduksi nya 12 – 35 %. Untuk tebu yang belum masak biasanya kadar gula reduksi tetes lebih besar daripada tebu yang sudah masak.
21
Komposisi yang penting dalam tetes adalah TSAI ( Total Sugar as Inverti ) yaitu gabungan dari sukrosa dan gula reduksi. Kadar TSAI dalam tetes berkisar antara 50 – 65 %. Angka TSAI ini sangat penting bagi industri fermentasi karena semakinbesar TSAI akan semakin menguntungkan, sedangkan bagi pabrik gula kadar sukrosa menunjukkan banyaknya kehilangan gula dalam tetes.
 Komposisi Tetes
Tetes merupakan bahan yang kaya akan karbohidrat yang mudah larut (48-68)%, kandungan mineral yaqng cukup dan disukai ternak karena baunya manis. Selain itu tetes juga mengandung vitamin B komplek yang sangat berguna untuk sapi yang masih pedet. Tetes mengandung mineral kalium yang sangat tinggi sehingga pemakaiannya pada sapi harus dibatasi maksimal 1,5-2 Kg/ekor/hari. Penggunaan tetes sebagai pakan ternak sebagai sumber energi dan meningkatkan
22
nafsu makan, selain itu juga untuk meningkatkan kualitas bahan pakan dengan peningkatan daya cernanya. Apabila takaran melebihi batas atau sapi belum terbiasa maka menyebabkan kotoran menjadi lembek dan tidak pernah dilaporkan terjadi kematian karena keracunan tetes.
Pembuatan bioethanol molase melalui tahap pengenceran karena kadar gula dalam tetes tebu terlalu tinggi untuk proses fermentasi, oleh karena itu perlu diencerkan terlebih dahulu. Kadar gula yang diinginkan kurang lebih adalah 14 %. Kemudian dilakukan penambahan ragi, urea dan NPK kemudian dilakukan proses fermentasi. Proses fermentasi berjalan kurang lebih selama 66 jam atau kira-kira 2.5 hari. Salah satu tanda bahwa fermentasi sudah selesai adalah tidak terlihat lagi adanya gelembung-gelembung udara. Kadar etanol di dalam cairan fermentasi kurang lebih 7% – 10 %. Setelah proses fermentasi selesai, masukkan cairan fermentasi ke dalam evaporator atau boiler dan suhunya dipertahankan antara 79 – 81oC. Pada suhu ini etanol sudah menguap, tetapi air tidak menguap. Uap etanol dialirkan ke distilator. Bioetanol akan keluar dari pipa pengeluaran distilator. Distilasi pertama, biasanya kadar etanol masih di bawah 95%. Apabila kadar etanol masih di bawah 95%, distilasi perlu diulangi lagi hingga kadar etanolnya 95%. Apabila kadar etanolnya sudah 95% dilakukan dehidrasi atau penghilangan air. Untuk menghilangkan air bisa menggunakan kapur tohor atau zeolit sintetis. Setelah itu didistilasi lagi hingga kadar airnya kurang lebih 99.5%.
23
BAB IV
PENUTUP
4.1. Kesimpulan
 Gula adalah suatu karbohidrat sederhana yang menjadi sumber energi dan komoditi perdagangan utama.
 Limbah adalah buangan yang dihasilkan dari suatu proses produksi baik industri maupun domestik (rumah tangga). Dimana masyarakat bermukim, disanalah berbagai jenis limbah akan dihasilkan. Ada sampah, ada air kakus (black water), dan ada air buangan dari berbagai aktivitas domestik lainnya (grey water).
 Tahapan-tahapan dalam proses pembuatan gula dimulai dari penanaman tebu, proses ektrasi, pembersihan kotoran, penguapan, kritalisasi, afinasi, karbonasi, penghilangan warna, dan sampai proses pengepakan sehingga sampai ketangan konsumen.
 Pada pemrosesan gula dari tebu menghasilkan limbah atau hasil samping, antara lain:
 Ampas berasal dari tebu yang digiling dan digunakan sebagai bahan bakar ketel uap.
 Blotong atau filter cake adalah endapan dari nira kotor yang di tapis di rotary vacuum filter.
 Tetes merupakan sisa sirup terakhir dari masakan yang telah dipisahkan gulanya melalui kristalisasi berulangkali sehingga tak mungkin lagi menghasilkan kristal.
4.2. Kritik Dan Saran
24
DAFTAR PUSTAKA
Anonymous. 2009. Penelitian Gula. http://www.ipard.com/ penelitian /penelitian_gula.asp#atas. Diakses 9 januari 2010.
Arifin. 2009. Pengaplikasian-Bioaktivator. http://arifinbits.wordpress.com. Diakses 9 januari 2010
Fadjari. 2009. Memanfaatkan Blotong, Limbah Pabrik Gula. http://kulinet.com/baca/ memanfaatkan-blotong-limbah-pabrik-gula/536. diakses 9 januari 2010
Mucharomah. 2007. Pemanfaatan Bagasse. http://ejournal.unud.ac.id/abstrak /mucharomah %20pra. %20100102007.pdf. ddiakses 9 januari 2010
Purwani. 2008. Fermentasi Etanol dari Tetes (molasse). http://bioindustri.blogspot.com/ fermentasi-etanol-dari-tetes-molasse.html. Diakses 9 januari 2010
Riswan. 2009. Blotong Filter Cake. http://www.risvank.com/?p=307. Diakses 9 januari 2010.
Source: http://www.kaskus.us/showthread.php?t=6639144
Wahyu. 2009. Membuat Bioetanol dari Tetes. http://www.bioethanol. yolasite.com/index/ membuat-bioetanol-dari-tetes-tebu. Diakses 9 januari 2009.

0 comments:

Post a Comment